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The structure of fully developed turbulence in smooth circular tubes has been 
studied in detail in the Reynolds number range between 10,700 and 96,500 
(R based on centre velocity and radius). The data was taken as longitudinal 
and transverse correlations of the longitudinal component of turbulence in 
narrow frequency bands. By taking Fourier transforms of the correlations, cross- 
power spectral densities are formed with frequency, w ,  and longitudinal or 
transverse wave-number, kx or kz, as the independent variables. In this form the 
data shows the distribution of turbulence intensity among waves of different size 
and inclination, and permits an estimate of the phase velocity of the individual 
waves. 

Data taken at radii where the mean velocity profile is logarithmic show that 
the waves of smaller size (higher (kz + ICE)*) decrease in intensity more rapidly 
with distance from the wall than the larger waves, and also possess lower phase 
velocity. This suggests that the waves might constitute a geometrically similar 
family such that the variation of intensity with wall distance is a unique function 
with a scale established by (k: + ICE)-*. The hypothesis fits the data very well for 
waves of small inclination, a = tan-l(kX/kz), and permits a collapse of the in- 
tensity data at the several radii into a single ‘wave-strength’ distribution. The 
function of intensity with wall distance which effects this collapse has a peak at  
a wall distance roughly equal to 0*6(lcz + kE)-&. For waves whose inclination is 
not small, it would not be expected that the intensity data could collapse in this 
way since the measured longitudinal component of turbulence represents a com- 
bination of two turbulence components when resolved in the wave co-ordinate 
system. 

Although the similarity hypothesis is strictly true only for data taken where the 
mean velocity profile is logarithmic, a simple correction procedure has been dis- 
covered which permits the extension of the similarity concept to the sublayer 
region as well. This procedure requires only that the observed total turbulence 
intensity at  any station in the sublayer be reduced by a factor which depends 
solely on the yf distance from the wall (i.e. on the distance from the wall, scaled 
by the viscid parameters of the sublayer). The correction factor is independent 
of Reynolds number and applies equally to waves of all sizes. In this way, all of 
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the turbulence waves down to the very smallest of any significance, are found to 
satisfy slightly modified similarity conditions. 

From the data taken a t  Reynolds numbers between 96,500 and 46,000 wave 
‘strength’ is seen to be distributed more or less uniformly over a range bounded 
at  one extreme by the largest waves which the tube can contain (kz + ki (2/a),, 
where a is the tube radius) and at  the other extreme by the smallest waves which 
can be sustained against the dissipative action of viscosity (kz+ lc; z (O.O~V/U,)~,  
where U, is the shear velocity). As the Reynolds number of the flow is lowered, 
the spread between the bounds becomes smaller. If the data is projected to a 
Reynolds number of order lo3 the bounds coalesce and turbulence should no 
longer be sustainable. 

1. The nature of the data 
Steady, fully developed turbulence in a straight smooth circular tube repre- 

sents one of the simplest cases of shear flow turbulence. The structure of this 
turbulence, that is, the description of the turbulent velocity field by two-point 
space-time correlations, is the concern of the paper. The dependent variables are 
the three velocity components which have six pair combinations. The inde- 
pendent variables are the three space co-ordinates x, y, z (defined in figure 1) and 
time, t .  Assuming that correlations are stationary in the x, z, and t variables, there 
are then only five arguments for correlation functions: x1 - x2, z1 - z,, t ,  - z,, y,, 
y2. A complete description of turbulence structure therefore requires six func- 
tions of five arguments each. Even if such massive data were available, it would 
be necessary somehow to extract essential simple features before it could be 
understood and made use of. 

-------- 

JJ=u-r 
z=a e 

FICXJF~E 1. Co-ordinates and velocity components. 

The data reported here deals only with ulu2 correlations (velocities defined in 
figure 1). The arguments 2, - x2, x1 - z,, and t ,  - t ,  are explored extensively at  
different y, but no correlations are taken where y1 is different from 9,. 

Correlations taken in a ‘stationary ’argument such as 5, - x2 or t, - t ,  may be 
Fourier transformed in that argument to yield power spectral densities with the 
corresponding transform arguments being kz and o. Since the variable z is 
closed, correlations must be periodic in z1 - z, and in a strict sense a Fourier trans- 
form cannot be taken, but rather a Fourier series expansion should be used. 
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Practically, significant correlations are restricted to a small arc (about one radian) 
so that a Fourier transform in x1 - z2 can be effected simply by requiring the corre- 
lation to vanish at  all large arguments. The corresponding transform argument 
is kz. For the y co-ordinate, the lack of stationarity prohibits Fourier transforma- 
tion, although an eigenfunction expansion of any correlation can be effected 
by the solution of an integral equation with the correlation as the kernel 
function (Lumley 1967). Since no data was taken with y1 + y2 these manipula- 
tions are not possible here, but the interpretation given below of the existing 
data shows that much insight into turbulence structure can be gained without 
resort to this complexity. 

Correlation functions and power spectral densities are conjugate ways of 
expressing the same data. The data reported here was taken in mixed form; that 
is, frequency filters were used so that the transform in the time variable already 
existed, but spatial co-ordinates were the other natural arguments. For a con- 
sistent treatment it was necessary either to invert the time transform or perform 
the spatial transforms. The latter course was selected because of ample evidence 
given by visualization techniques (Runstadler, Kline & Reynolds 1963) that 
pseudo-periodic structures existed, and the description of such structures is 
more concise in the transform variables. Further justification of this course will 
be given below. 

Consider briefly the kind of data generated at  a fixed distance from the 
surface, y. The power spectral density is a function of the three variables k,, kz 
and w. It is real and is unchanged if the signs of all three arguments are reversed. 
Therefore we may ignore the negative regime of any one of the arguments and 
so adopt the convention that w > 0. Further, since the time average flow is free 
of swirl the correlations must be symmetric in z1-x2 and the power spectral 
density must be symmetric in kz. Therefore only the regime kz 2 0 need be 
described. Finally, with w >, 0 the regime k, > 0 corresponds to waves with an 
upstream phase velocity. Previous investigations have shown that negligible 
turbulence energy exists in such wavest so that the region k, > 0 need not be 
considered. For convenience the sign of k, will be reversed throughout this paper. 
Thus, when the power spectral density in the region w > 0, kz > 0, ks > 0 is 
described, the reader should understand that the waves are in fact propagating 
downstream and that the power is in fact divided equally between waves of 
positive and negative kz. 

To generate the three-dimensional power spectral density defined above it is 
necessary to take a series of correlations in narrow frequency bands and vary 
the spacings x1 - x2 and x1 - x2 jointly. The investigation here was less ambitious: 
x1 - x2 was kept at  zero while z1 - z2 was varied, and vice versa. When the trans- 
forms of the x1 - z2 correlations (with x1 - z2 = 0 )  are taken, the resulting two- 

? For example, the data of Favre, Gaviglio & Dumas (1958) show that a local space 
correlation at  zero delay has a characteristic scale which is an order of magnitude smaller 
than the characteristic scale when the optimum time shift is used. This demonstrates 
the strong anisotropy of the A s ,  At correlation and corresponds to a dominant concentra- 
tion of power in disturbances propagating with the stream. The surface pressure data 
of Willmarth & Wooldridge (1962) show even more clearly the absence of any significant 
upstream propagation. 
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dimensional power spectral density P(o, Ic,) is the integration in k, of the full 
three-dimensional P(w, k,, kz). This can be thought of as the integrated 'pro- 
jection' of P(w, kz, kz) on the k, = 0 plane (figure 2). Similarly, the transforms of 
the x1 - x2 correlations (taken with z1 - x2 = 0) give the integrated ' project,ion ' 
of P(w, kx, k,) on the k, = 0 plane. 

- t s n  x \ I 

4* 
FIGURE 2. Schematic of power distribution in wave-number frequency space. 

Fourier transforms of correlation functions give power spectral densities 
which have the interpretation of power contained within an element of unit 
width in the frequency or wave-number co-ordinate. Even if the total power is 
normalized to unity (as is done here) the spectral density has the dimensions of 
inverse frequency and wave-number. Turbulence in tube flow covers a range of 
frequency and wave-number on the order of 1000: 1, SO that a two-dimensional 
P(w, k,) or P(w, k,) will cover a range of 106: 1, while P(o, k,, kz) will cover a range 
of 109: 1. Just as logarithmic scales are very useful for the display of the w ,  k, 
and k, co-ordinates, so it is convenient to introduce other spectrum functions 
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which offer several advantages: 
(1)  they are non-dimensional and the range of interest is about one order 

of magnitude. 
(2) They represent the power in a frequency wave-number region proportional 

in size to the location of the region. This permits direct comparison of the relative 
power in bands with identical ratios between the upper and lower band limits, 
i.e. over the same absolute increment on the logarithmic scale. 

(3) They are complementary to the logarithmic co-ordinate display since 
total power is the simple integral of these spectrum functions in the log co- 
ordinates. 

All of the results given in this paper will use these spectrum functions and log 
co-ordinates. 

It has long been known (Laufer 1953) that tube flow turbulence is charac- 
terized by a thin layer near the surface where viscosity plays an important role, 
while in the bulk of the flow (where the mean velocity profile is logarithmic) the 
phenomena are essentially inviscid. Corresponding to these two rbgimes the non- 
dimensionalization of variables is either of the Reynolds or Strouhal variety 
and neither one will collapse the data throughout the entire field. In this paper 
an arbitrary choice of Reynolds scaling is made. Thus, with U,  as the customary 
shear velocity, the non-dimensional variables are : 

1 (2) 
y+ = yu,/v, k,+ = k,v/U,, 

W+ = O V / U ~ ,  k,’ = ksv/U7. J 
As mentioned above, two- and three-dimensional power spectral densities are 
given in normalized form: 

I 

To find absolute spectral levels at any specified distance from the surface it 
is necessary to multiply these normalized functions by the total turbulence 
intensity u2 at the y+. The non-dimensionalized form of the intensity is 

I(y+) = G(y+)/U:. (4) 

All of the data reported here were obtained by hot-wire anemometers in air 
in a 5.25 in. diameter tube. Six Reynolds numbers (based on centre-line velocity 
and the tube radius) in the range 10,700-96,500 are represented, corresponding 
to a range of shear velocities of 0.45-2.80ft./sec. The details of the experimental 
technique and reduction of the data are given by Morrison (1969). Confirmation 
that the data is consistent in its grossest details with other investigations is 
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afforded by the mean velocity profile (figure 3) and the intensity distribution 
(figure 4 (a)  and 4 (b ) ) .  

Figures 5(a) and 5 ( b )  show a sample of the data in the form in which it is 
generated. These are correlations (transverse in this case) in narrow frequency 
bands. The scatter seen in these figures is characteristic of the entire body of 
data. By taking the Fourier transforms of the correlations of figures 5(u)  and 
5 (b )  and then multiplying by the measured frequency spectral density shown in 

I I 1 1 1 1 1 1 1  I I 1 I I I I I I  I I I I 1 1 1 1 1  I 1  

30t 1 
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FIGURE 3. Comparison of mean velocity. Data taken by hot wire. Reynolds number: 
0, 17,000; 0, 46,500; A, 96,500; - , universal velocity profile. 

figure 6, the two-dimensional spectrum function of figure 7 (a)  is generated. In  
a similar way all of the figures 7 (a)-7 ( r )  are formed and these comprise the body 
of data to be studied here. The marks on the inside edge of the w+ scale in these 
figures indicate the frequencies at which transverse or longitudinal correlations 
were actually taken in each case. Table 1 lists the flow conditions corresponding 
to  the 18 parts of figure 7 and in addition lists 5 other B figures which are reported 
by Morrison (1969) but which have been omitted here. 

Correlations and their transforms (spectra) are, of course, entirely comple- 
mentary and no information exists in one which is not present in the other. This 
is not to say that the two forms of presentation lead to equally simple interpreta- 
tion, It was noted above that the data of Runstadler et al. (1963) suggested that 
a natural wavelike structure exists in boundary layers. Also the linearized 
perturbation form of the Navier-Stokes equations in the presence of a mean 
shear field exhibit vorticity wave solutions (see, for example, Landahl 1967). 
Finally, figures 7(0) and 7 ( q )  show turbulence disturbances to propagate at  
speeds significantly different from local flow speed and give evidence of wave 
structure with significant extent in the direction of the mean velocity gradient. 
These then constitute reasons for expecting special results from a spectral treat- 
ment of the data. One such result is a geometric similarity law which is developed 
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in the next section. Before proceeding to this development is is relevant to 
observe that the mathematical statement of geometrical similarity is contained 
in equation (1 1) which essentially represents the factorization of a spectrum 
function into a product. This means that if the data analysis had been performed 
on correlations rather than spectra we would have been seeking a decomposition 
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FIGURE 4. Turbulence intensity. (a)  Reynolds number: 0, 17,000; 0, 46,500; 
96,500; +, 250,000, Laufer (1953); x , 15,200, Clark (1968). (b) Reynolds number 
17,000; 0, 46,500; A, 96,500; +, 250,000, Laufer (1963). 
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FIGURE 4. Turbulence intensity. (a)  Reynolds number: 0, 17,000; 0, 46,500; A ,  
96,500; +, 250,000, Laufer (1953); x , 15,200, Clark (1968). (b) Reynolds number: 0, 
17,000; 0, 46,500; A, 96,500; +, 250,000, Laufer (1963). 
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of the raw data into a convolution of two unknown functions. The possibility of 
such a decomposition representing the data would probably not even have 
occurred to us. 

0 100 200 300 400 500 600 700 800 900 

Transverse separation (zf ) 

1.0 

0.8 

0.6 

Ruu 

0.4 

0-2 

0 

0 x- 100 200 300 400 500 
Transverse separation (z+) 

FICVRE 5. uu correlation in frequency bands with transverse separation y+ = 7.3, 
U, = 1.50. (a )  w + :  0, 0.00170; 0, 0.0036; A, 0.0072; V, 0.0145; X ,  0.0184. ( b )  w + :  
0, 0.029; 0, 0,041; A, 0.058; V, 0.097; X ,  0.194; 0, 0.33. 
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FIGURE 6. Normalized frequency spectrum. y+ = 7.3, 77, = 1.50. 
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FIGURE 7 ( n ) .  B ( w + ,  k i ) ,  y+ = 5.9, 77, = 0.60. 

FIGURE 7 ( 0 ) .  B(o+, k:), y+ = 3.0, U, = 0.60. FIGTJRE 7(p).  B ( w + ,  k:), y+ = 198, U, = 2.00. 
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FIGURE 7(g). B ( w + ,  k i ) ,  y+ = 14.6, U, = 1.50. 

Local mean 
city 

u, 
(ft./sec) 

0.45 

} 0-60 

0.80 

] 1.50 

1 2-00 

1 2.80 

0.45 

} 0.60 

0.80 

} 1.50 

2-00 

R,= U,a/y y (in.) 

mu+,  q) 
10.700 0.007 

24,000 0.050 
( 0.010 

1 0.100 
[ 0.050 

1 0.400 
[ 0.010 

0.200 

L%J+, k:) 
10,700 0.007 

24,000 0.050 

65,300 0.200 

Y b  

0.0026 
0.0038 
0.0076 
0.019 
0.0038 
0.0076 
0.019 
0.038 
0.019 
0.038 
0.076 
0.152 
0.0038 
0.0076 
0.038 
0.076 

0.0026 
0.0038 
0.0076 
0.019 
0.0076 
0.038 
0.076 

Y+ 

1.6 
3.0 
5.9 

20.0 
7.3 

14.6 
38.0 
73.0 
49.0 
99.0 
198 
395 
13.9 
27.8 
139 
278 

1.6 
3.0 
5.9 

20.0 
14.6 
73.0 
198 

I(Y+) 

0.25 
1.3 
6-0 
8.4 
6.2 
7.8 
6.7 
4.8 
5.6 
4-6 
4.3 
3.7 
8.1 
6.8 
4.5 
4.2 

0.25 
1.3 
6.0 
8.4 
7.8 
4.8 
4.3 

* May be found in Morrison (1969). 

TABLE 1. 



Structural similarity for turbulence in smooth tubes 129 

2. Reduction of the data 
The primary purpose of this paper is to show that the data shown in figures 7 (a)  

to 7( r )  (representing over 4000 correlation data points) can be efficiently oom- 
pressed in a logical manner which, at the same time, gives a simple physical 
meaning to the result. Before doing this it is important that the interpretation 
of wave geometry be clear. A point in w+, k, f ,  k: wave space represents a wave 
with total wave-number 

with lines of constant phase inclined to the x axis (tube axis) at  the angle 

k& = (k,fa + k:’)*, (5) 

a = tan-1 (k$/TCz+), (6) 

(7) 

when projected radially outward to the tube surface. Such a wave exhibits a 
streamwise phase velocity c+ = w+,kz = c,,u,, 
and a circumferential phase velocity (projected on the tube surface) of 

These properties are referred to in figure 2 and in the wave schematic diagram, 
figure 8. Because of the symmetrical distribution of wave power in kz, right- 
handed and left-handed helical waves are equally strong. In  the diagrams of 
figure 7, loci of constant phase velocity have unit slope. 

There are two general features of the spectrum functions to be observed. First, 
for b ( w + ,  k,$) data taken in the log layer, the ‘ridge’ of the spectral distribution 
corresponds to C, between about l4U, and 22U,. For the data taken in the sub- 
layer the C, at  the spectral peak drops as low as about SU,. Because of the limited 
total range of C,$, for almost all of the data it is possible to make the rough 
correspondence, w+ E 15kk. In  this way the plots of P(w+,  k$) may be viewed 
approximately as @(A$, k:) with a shift of the vertical scale upward by a factor 
of 15. That is, the B ( w + ,  k$) roughly represents the distribution of power among 
waves of various sizes and inclinations. (A locus of constant inclination, a, has 
then approximately a unit slope in these plots.) 

Following upon this fact, the next general feature to be observed from the 
B(o+, k: ) is that by far the largest amount of power is found in waves of relatively 
small inclination, a. For the smallest waves, sublayer data shows the dominant a 
to be about *radian while for the largest waves the log layer data places a at 
about &radian. These are waves highly elongated in the x direction, a fact 
roughly indicated by the early data of Grant (1958) and F a n e  et al. (1958) for 
the longitudinal turbulence component. 

Now we shall try to compress the b ( w + ,  kz) data for stations in the log layer 
(y+ > 70) for the several Reynolds numbers. The clue for the procedure is best 
seen from a comparison of figures 7 (e) and 7 (h )  (U, = 2.0). Here it is very apparent 
that in going from y+ = 49 to yf = 395 there is a strong shift of power away from 
the high k;. That is, the small waves are relatively weaker at the larger distance 
from the wall. It is on the basis of this evidence that we make the key hypothesis 
of this work. If a wave with a small dimension projected on the tube surface, 

9 Fluid Mech. 39 
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A&,, has a small radial extent, g+, while a large wave has a large radial extent, 
it is possible that waves oE all sizes may be geometrically similar. By this we 
mean that each of the velocity components of the wave (a, v and 8 as defined in 
figure 8) would be a unique function of y+/& independent of the size or inclina- 
tion of the wave and differing only in strength from wave to wave.t In  particular 
this would require the intensity of each velocity component to be a unique 
function of k&, y+ (note kkt = 2n/&). 

* C,=C/sin a, phase velocity 

C, wave speed 

\ I \ \ C,=C/cos 01, phase velocity 

Projected mean velocity 

FIGURE 8. Wave schematic diagram. 

How may this hypothesis be tested? The available data describe the spectral 
power in u, which is actually a combination of $2 and 8, 

u = &cosa+t3sina. (9) 
Therefore it is a mixture of& spectra and 8 spectra and their cross-spectral density 
as well.$ If we wish to separate out the or &, it is necessary to select either 

t Some of the analytic consequences of geometric similarity are discussed in the 

$ For a precise discussion of this point see the appendix. 
appendix. 
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small a or large a data. The choice is obviously small a. Next it is necessary to 
form the absolute spectral level at each yf by taking the product 

~ ( O J + ,  kz, y+) = I(y+) B(w+,  k?, y+). (10) 

Following this we choose a variety of representative points (w+, k;) throughout 
the data field, but corresponding to small a (i.e. w+/k: < 4). With a small we also 
have k&,, k$. We now regard y+, or more precisely, kkt y+, as the relevant 
independent variable and plot 9 us. k&, y+ for each of the chosen points (w+, k:). 
If the similarity hypothesis is valid, it should be possible to find a radial distribu- 
tion function for intensity, f(kkty+), applicable to all waves, such that all the 
invididual plots of 5 can be represented by the factorization: 

A 

a@+, kt+,ty+) = f(k&,y+)A(w+, e l .  (11) 

Here A(w+, kz) is a function which we will call the wave strength, which depends 
on the size and inclination of the particular wave. The data for U, = 2.80 and 
U, = 2.0 do in fact collapse on this basis giving the f(k&y+) shown in figure 9 
and the A distributions shown in figures 10 and 11 (actually only the solid portions 
of the A contours, since these correspond to the small a). Since a product de- 
composition of the form of (1  1) is arbitrary to the extent of a scalar multiple 
of one factor, f has been chosen so that its maximum has a value of unity. 

The quality of the collapse of the data can be judged from figures 7 (f) to 7 (h). 
The dashed contours in these figures represent the B calculated backward from 
the A of figure 10 andfof figure 9. In  no case do the values given by the calculation 
differ from the data by more than 15 % of the maximum value of B in the par- 
ticuIar figure, with typical differences less than 7 %. 

0.0 1 0.1 1 .o io 
k 0 , Y  

F I ~ ~ J R E  9. Wave intensity function for ti. 

3. Extension of the data reduction to low y 
If the B ( w + ,  k$) data for y+ = 27.8 and y+ = 13.9 with U, = 2.80 (figures 7 (i) 

and 7 (j)) are compared with the predictions derived from the A and f just calcu- 
lated, it happens that the shape of the predicted B distributions match the 
data, but their general level is much lower. This suggests that perhaps the 
similarity concept can be extended to  y+ < 70 by the simple expedient of 
reducing the experimental I(y+) by a correction factor. This expedient works very 

9-8 
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well, and the appropriate correction factor is given in figure 12. Not only does it 
work for the U, = 2.80 data, but also for U, = 2.0 and U, = 1.50 as well. (Since 
only one y+ > 70 was available for U, = 1.50, it  could not be treated without the 
correction. With the correction, the data at y+ = 7~3,1443 and 38 are used together 
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FIGURE 10. Wave strength, A. U, = 2.82 ft./sec, R 
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FIGURE 11. Wave strength, A. U, = 2.0 ft.lsec, R 

= 96,500. 

= 65,300. 
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with y+ = 73.) The resulting A for U, = 1.50 is seen in figure 13. Some idea of how 
well this correction works is given by figure 7 ( e ) .  Here a 17 % reduction of I(y+) 
has been used and the ‘backward ’ calculation of d from A and f is seen to be 
excellent. 

There is a simple mechanism which seems to  explain most of the correction 
used. The similarity hypothesis which proved successful in collapsing the t2 data 
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in the log layer should, of course, apply to all wave velocity components, although 
with different radial distribution functions. If one writes the linearized Navier- 
Stokes equations in the wave co-ordinates 9, y, and 5 shown in figure 8 (as in 
the appendix), the equations containing v and 8 are independent of .Ei and may 
be solved separately. The resulting v may then be used in the equation for Q 
where it appears as a ‘driving’ term multiplying dUldy. Since the solution 
for v is only slightly affected by the deviation of the mean velocity profile from 
logarithmic near the wall (i.e. v retains its similarity properties), the driving 
term in the $2 equation will increase at low y+ as d Uldy  becomes larger than that 
which the log function would show, were it to extend that far. The difference 
produces a local deviation of $2 from log law similarity. Reasoning in this way, 
a correction to $2 (which is, of course, u for waves of small a) can be estimated as 
shown in figure 14. F’rom the actual mean velocity profile and the experimentally 
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FIGURE 14. Prediction of intensity correction factor. 

measured root-mean-square u fluctuation, a representative displacement of 
fluid normal to the wall is deduced. The displacement is used in turn to obtain 
an apparent root-mean-square u fluctuation, which would have been found had 
the log profile persisted to lower y+. The square of the ratio of the apparent 
to the true u is the predicted intensity correction factor shown in figure 12. 
The prediction is excellent down to a y+ of 25 where, apparently, direct effects 
of viscosity become important. 

In  summary, the experience with the intensity correction suggests that while 
4. deviates from strict similarity for yf < 70, v does not deviate from similarity 
until y+ < 25. Whether or not this interpretation of the data stands up under 
further detailed measurements, the experimental fact remains that the simple 
expedient of adjusting intensity works, and works independently of the size 
and inclination of the individual waves. While the data for the three Reynolds 
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numbers in question extends only to y+ = 7, the B ( w + ,  k:) at lower Reynolds 
number, figures 7 (m) and 7 (n)  exhibit very small changes of spectral distribution 
between y+ = 10 and the wall, so it is highly probable that an intensity correction 
will work right down to y+ = 0. 

4. Extension of the data reduction to large a 

As long as we are studying only small a, the wave size is determined essentially 
by kz and it is never necessary to invoke the approximation w+ r 15k$ specifi- 
cally. The assumption actually used is simply that each point with co-ordinates 
(w+, k:) correspond to some (k;,  kz) and the same (k:, kz) at each y+.  In  fact the 
assumption can be relaxed further, so that k$ is permitted to occupy a small 
band of values at each w+ provided the band is the same at each y+.  However, 
when considering large a, it is advisable to have the best possible estimate of 
k$ Aince it figures importantly in ktot. 

Since we already have convincing evidence that turbulence waves are geo- 
metrically similar, the similarity property can be used to estimate C,. The im- 
portant region for wave interaction with the mean flow is the so-called critical 
layer (Lin 1955) where the wave speed matches the mean flow speed. For a similar 
family of waves it is shown in the appendix that height of the critical layer, y;, 
will scale with A&, i.e. k&y$ = const. To check this point experimentally would 
require the full three-dimensional power spectral density P(w, k,, ks) shown in 
figure 2, and not just the two projections P(w, k,) and P(w, kz) actually available. 
Interpreting the projected data in the most favourable way (by an analysis too 
detailed to report here), we conclude that, although there is a considerable spread 
in the results, k&y$ = 0.6 is a reasonable approximation. Using this, a choice 
of kkt yields a value of yt which in turn gives C,+ from the mean velocity profile. 
A second choice, that of a+, yields k,+ and thence k z .  Thus we have a unique 
implicit relationship between (wf, kz) and ( h i ,  k:). 

In $ 2  we observed that 
u = acosa+Qsina. (9) 

Thus, as a increases, the content of u shifts from 0, to 12. While we certainly 
expect a to be similar for different size waves, it may have an intensity distribu- 
tion function different from the f (k& y+)  which characterizes a. 

If we denote the similarity function for w as g2, as in the appendix, data for 
tan a > 3 (where aisunimportant) shows that g, has a maximum shaped very much 
like the maximum off but located at an argument, k&,y+, nearly 4.5 times as 
large. Data for intermediate a consistently show similar maxima, the location pro- 
ceeding smoothly from the location of fmax to the location of gmax as tana  
increases from 4 to 3. This suggests that the function f might be used at all a, 
provided its argument were modified to be a function of a. Introducing the 
function ( ~ ( a )  shown in figure 15, which describes the shift of the maximum 
relative to the original maximum off, we try the correlation f(k& y + / a ( a ) )  for 
all the a previously omitted. This works very well, in fact, as well as the original f 
for small a, and has been used to produce the dotted portions of the A contours in 
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5. Comparison of the different Reynolds numbers 
The figures 10, 11 and 13 show the wave strength for successively decreasing 

Reynolds numbers: 96,500, 65,300, and 46,500. Although wave data were taken 
down to R = 10,700, a t  any particular R this does not cover a sufficiently large 
range of y+ to  permit areliable calculation of A .  However, within the more limited 
range for which A is given, some distinct trends may be seen. 

First, the high IC,+ end of the figures show a pattern of distribution of strength 
among the small waves which is substantially independent of Reynolds number 
to the degree of accuracy of the data. These waves have a characteristic dimen- 
sion matched to the dimension of the sublayer. Their wavelength is of order 
A&,, = 150 and their C, is about 9U,. This latter value places the ‘critical layer’ of 
these smallest waves at a yf = 12. These waves are equally divided betweenright- 
and left-hand helical components which exhibit opposite circumferential phase 
velocity. The combination of these components gives, roughly, a wave structure, 
‘standing’ in the z co-ordinate but travelling in x and t with a wavelength 
A,+ z 500 and the phase velocity Cx = 9U.. It is this standing wave pattern which 
gives rise to the longitudinal ‘streaks’ found in the visualization studies of Run- 
stadler et uZ. (1963). The reason these streaks are so clearly visible is that there is 
no smaller structure in the flow to disrupt their organization. 

Considering next the low k$ end of the A distributions, we again observe a 
strong similarity of shape between the different Reynolds numbers, although the 
characteristic w+ and IC,+ are lower at the higher U,. This is because the viscid 
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figures 10, 11 and 13. It is our opinion that while the location of maxima and the 
intensities near maxima are well fitted by this simple scheme, it is unlikely that 
g, far away from maximum will indeed resemble f very closely. Our data here is 
weak and direct measurements of w (transverse velocity in the tube co-ordinates) 
are needed. 

It is of interest to note that data taken at low yf displaying large a is subject 
to two correction procedures. These seem to be applicable concurrently since the 
data treated in this way collapse with no worse accuracy than the data in general. 
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scaling which waa adopted is not applicable to the large waves. The appropriate 
inviscid scaling is: x* = x/a, 

y" = Yb, 
z* = z/a = 0, 

w* = wa/U7, 
k*, = k,a, 
k,* = kza.  

If these variables are introduced, the low kz end of the A distributions are seen 
to coincide very well in shape although the magnitude of A for different Reynolds 
numbers is somewhat different. (The change of variables corresponds to relative 
translation of the A distributions along a direction with unit slope in the w+, k: 
co-ordinates, the amount of the translation in either wf or k$ being the ratio of 
the U, for the cases in question.) The largest waves have an inclination a of 
about &. Their total wavelength (which is equivalent to transverse wavelength 
for this small a) is about one radius for the dominant power and about one-half 
the circumference for the limiting size. The C, for the dominant waves corresponds 
quite closely to the mean velocity at y /a  = 0.1. 

It has been pointed out (e.g. Bradshaw 1967) that for stations in the log layer 
and for the central range of wave-numbers the distribution of power among 
the wave-numbers should scale solely on the basis of the distance to the surface. 
If we ignore the small variations in convective velocity for waves in this range so 
that w+ can be replaced by a multiple of k$, then the spectrum function appearing 
on the left side of (11) can be written with the arguments 3 ( k z ,  k:, y+) or, better 
still, @(k&, a, y+). The implication of the Bradshaw N (1967) remark is that these 
arguments must appear in combination thus: P(k&,y+, a). On the other hand, 
geometric similarity as described by (1 1) requires that all dependence of @on yf 
be incorporated inf. Combining these two requirements, the fact that A is inde- 
pendent of y+ means that it must be independent of lc&, as well. That is, A may 
depend only on a in the central range of wave-numbers. While figures 8,9  and 11 
show that this prediction is not strictly upheld, yet neither is it at  gross variance 
with the data. A qualitative explanation of the discrepancy can be made on the 
basis that the sublayer waves are the strongest at  a $ while the largest waves 
are strongest at  a r &. The intermediate distribution of A provides a smooth 
transition between these limits and cannot therefore be completely independent 
of k$,+ However, we may also conjecture that at much higher Reynolds numbers 
than those tested here the gradient of A in k&, at constant a will be negligibly 
small. 

The A distributions for the three Reynolds numbers may be described as 
more or less uniform in k between the two limits established by viscosity at the 
high k and tube dimension at  the low k end. The extent of the distribution in 
w at any kz between these limits is roughly independent of kz, spanning a range 
of about 10: 1 in w. If Reynolds number is decreased steadily, the two k limits 
may be projected to approach each other. Roughly, 

leading to the conclusion that no waves will exist for aU,/v < 50. This corresponds 
to R < 900 which is in good agreement with the accepted lower limit for turbulent 
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tube flow. An interesting conclusion which can be drawn from this view of the 
structure ‘shrinking’ down to a pure sublayer form as R is decreased, is that the 
waves of sublayer size must be able to sustain themselves without the infusion 
of energy from any larger waves in the flow. 

One implication of uniform distribution of A between the IC, limits is that the 
u velocity fluctuations observed in the sublayer, say at y+ = 10, will move pro- 
gressively to smaller average IC,+ as R is increased. Compare, for example, figures 
7 (n) and 7 (i) and observe how the lower 7c,+ are in much greater evidence at the 
high Reynolds number. The effect is quite gradual since the influence of very 
large waves is reduced according to the observed behaviour of the wave intensity 
function, f, at the low kt+O,y+ end. Nevertheless, the relative intensity of the small 
sublayer waves should continue to diminish (roughly as R-4). Assuming this prog- 
nosis is indeed borne out by subsequent data at  much higher R, it is curious that 
the mean velocity profile in the sublayer-buffer layer region should remain 
unchanged as the characteristic size of the local wave structure increases. 

6. Conclusion 
When this experimental study was embarked upon, the existence of periodic 

transverse structure in the sublayer was known from visual evidence (Runstadler, 
Kline & Reynolds 1963), and the initial work was directed toward confirming 
this with hot-wire measurement. Since visualization methods gave little evidence 
of transverse periodicity in larger sizes, we proceeded through the present study 
with an innate bias that the smallest waves which lie wholly in the sublayer and 
buffer layer were somehow different from the larger waves which involve the 
log layer. Therefore, it was with considerable surprise that we discovered a simple 
intensity correction procedure (§  3) which brings sublayer waves (which must 
have strong viscid effects) into the family of log layer waves. While this result 
simplifies the task of reporting the data, it  is not easy to understand why it 
happens. 

One major limitation in this work is imposed by the absence of correlations 
with y, + y,. The reader is cautioned not to interpret the wave intensity function 
f too literally as the y distribution of h. As discussed in the appendix, it is not 
likely that all waves of a given size, ktot, will have precisely the same &(y), so 
the measured f must be interpreted as an ensemble average of the intensity distri- 
butions of all the actual waves. To obtain a measure of the ‘ spread ’ of the distri- 
butions about the average requires the detailed data given by radial correlations. 
Of course these correlations contain much more information than just intensity, 
and will give the relative phase of the velocity components at  different y as well 
(i.e. the full complex functions h, and h, introduced in the appendix). 

While the component u is by far the easiest to measure, it is unfortunate that 
it is a combination of the natural wave components h and @. Only the component 
v remains invariant with wave angle, and therefore is the only one which can be 
used by itself to test the similarity hypothesis over a large angle range. However, 
it is very difficult to measure v close to a surface, so it may be necessary to resort 
to u and w at low y+. This is especially unpleasant, since three correlations, 
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uu, ww and uw, must all be measured. Thus, while the similarity hypothesis 
points ultimately to a very compact complete description of turbulence in tubes, 
it is certain that much additional careful work will be required before all the de- 
tails have been nailed down. The success of the similarity hypothesis also gives 
hope that the mechanism of wave interactions, by which this entire equilibrium 
structure is sustained, can be described in equally concise terms. 

We will close with a remark about the implications of the present results to 
theoretical analysis of turbulent tube flow. The only logical interpretation of the 
data is that dominant turbulence energy found at  any station in the flow is in 
structures which extend all the way from that station to the surface. Thus, for 
equilibrium turbulent flows of this kind, and equilibrium boundary layers must 
be included in that definition, analysis which is concerned with disturbances 
small compared with the distance from the surface is dealing, at best, with a very 
small part of the turbulence. 

Appendix. Some analytic implications of geometric similarity 
A wave of the kind pictured in figure 8 is two-dimensional since a/% = 0. 

Throughout this appendix we will use letter subscripts to indicate partial 
differentiation. The continuity equation for the turbulence components, v and 8, 

vv+8 ,  = 0 

leads to the stream function, +(y,??) for which 

v = -92 , 8= &. 
The Navier-Stokes equations are then 

V2+t + v(V2+, + U,, sin a)  + (8 + U sin a)  V2+p = vV4 $, 

at + v(a, + U, cos a)  + (8 + U sin a)  QE = vV%, 

k$ = b,(a) M k y )  exp{jW - W}, 
42 = b2(4 h2WY) exp {jW - Ct,}, 

(A 3) 

(A 4) 

where V 2  is simply (a2/ay2) + (a2/aa2). Geometrically similar wave solutions can be 

(A 5) 
written in the form 

(A 6) 

where h, and h, are complex functions. The appropriate mean velocity distribu- 
tion is U = B,+B,logy. 

Substitution of these three into the Navier-Stokes equations yields 

= non-linear terms, (A 8) 

vkb,(h'i - h,)) 
exp { j k ( z  - Ct))  

C (( U - =) b,h, sin a + B,b,h, cos a - 
kY j 

= non-linear terms, (A 9) 
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where the superscript primes indicate differentiation. If the non-linear terms are 
ignored, the first of these is the familiar Om-Sommerfeld equation with a special 
choice of average velocity profile. At Reynolds numbers of interest here, the 
viscid terms are very small, yet in a purely linear theory they must be retained 
at the critical layer where U E C/sina, and in the sublayer where y r 0. In  
fully developed turbulent flow it is the non-linear terms which assume importance 
at the critical layer. Viscous influences are significant only in the sublayer, and 
for present purposes may be neglected. The brief analysis here is not complete 
enough to handle correctly the wave interactions which figure in a non-linear 
theory so this will not be attempted. 

Consider then the linear inviscid terms in (A 8). In order that these be inde- 
pendent of absolute scale, k,  it is necessary that U - C/sina be a function of ky 
only. This is equivalent to the condition 

-- - B, - B, log mk, 
C 

sin a 

where m is an arbitrary constant. Comparison 

where y,k = l /m .  

The wave speed is seen to match the mean velocity component (projected into 
the wave cross-section) at  a distance from the surface inverse to k .  That is, the 
location of the critical layer is geometrically scaled. 

Consider next the linear inviscid terms in (A 9). In  order that these terms be 
independent of a it is necessary that 

b,/b, = cot a. (A 13) 

Thuswe anticipate that waveswith small inclination should have 42 much stronger 
than v or &, while the reverse should be true for waves with large a. This be- 
haviour is confirmed by surface pressure fluctuation data. Since surface pressure 
is related to the v and 8 components (byintegration of the y momentum equation) 
the fact that surface pressure correlations are dominated by waves of large at 
means that the same must be true of w and 8. By contrast, the longitudinal 
turbulence velocity is dominated by waves of small a .  

The longitudinal turbulence component which constitutes the data of this 
paper is 

u = $cosa+8sina,  

which may be squared to give 

u2 = cos2 a + $& cos a sin a + 8 2  sin2 a. (A 15) 

t The first date of this kind was given by Willmmth & Wooldridge (1962). A more 
complete picture is given by Bull (1963). 
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From (AZ), (A5), (A6) and (A14) the time-average part of the quadratic 
functions are 

Q2 = +h,hX b;, 

= f(h,h;* + hX hi) blb2, (A 16) 
d2 = gh; hi* b;, 

where the superscript * denotes complex conjugate. Now if h2 were to  be a pre- 
cisely determined function then h, hz would be exactly a scalar multiple off (ky) 
given in figure 9. More likely, waves of a given k are associated with a distribution 
of functions, h,. Then f(ky) must be regarded as an ensemble average of this 
distribution and the statement of geometric similarity is extended to the en- 
semble. Taking ensemble averages (with respect to h, and h,) of (A 16) we have 

~ h W 2 1  = m y )  b%, 

EhCQOI = 9,(7cy) bib,, (A 17) 

where 91 = J%[i(h,h;* +w4)1, (A 18) 

8h"@21 = g d k y )  % 

92 = Eh[&h;*], 
are both functions which have not yet been experimentally measured. An 
ensemble average of (A 15) can also be taken and then simplified with the aid 
of (A 13) and (A 18) to 

This function enclosed in parenthesis shows how the composition of E[u2] changes 
from f to 9, to g2 as a increases from 0 to Qn, 

Eh[u2] = bi( f cos4 a + g ,  cos2 a sin2 a + g2 sin4 a)/cos2a. (A 19) 
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